Wednesday, November 5, 2008

Best Post of July, 2008: "What is nNOS? And why is nNOS histochemistry useful in muscle biopsies?"

From time to time, I feature an installment of my “Best Post Of The Month” series. The next month up for review is July '08, and I feel that this was the best item posted that month:


I recently sent a specimen out for histochemistry to see if the muscle had diminished dystrophin and/or dystrophin-associated proteins. One of the histochemical stains in the panel was neuronal nitric oxide synthase (nNOS). I honestly didn’t know what the deal was with that particular protein, so I thought I’d share with you what I found out.

In normal muscle, histochemistry for nNOS shows uniform sarcolemmal labeling. Internal sarcoplasmal labeling can also be present. Blood vessel walls are also positive. In Duchenne or Becker muscular dystrophy, nNOS is absent or reduced in the sarcolemma. Immature fibers will also lack nNOS histochemical staining.

An article by Ehmsen et al in the Journal of Cell Science states the following: “The production of nitric oxide (NO) by nNOS is important for increasing local blood flow to match the increased metabolic load of contracting muscles, such as during exercise… [P]atients with DMD [Duchenne muscular dystrophy] show abnormal blood vessel constriction presumably due to lack of nNOS at the sarcolemma… However, abolishing nNOS expression alone in mice does not cause overt dystrophy.”

So if it doesn’t cause overt dystrophy, what’s the point of doing this particular histochemical stain?

Dr. Steve Moore (pictured), muscle pathology guru at the University of Iowa, emailed me the following response when I queried him on the subject: “[nNOS] is quite sensitive to dystrophin mutations, meaning that it is virtually always absent in DMD and reduced to absent in BMD. In milder cases of BMD, nNOS sometimes can be the "canary in the mine" for detecting a dystrophinopathy. In the setting of a possible dystrophin mutation carrier, it provides one more marker for the muscle cells expressing either normal or mutant dystrophin. Dystrophin-negative fibers are also nNOS negative. This contrasts with the dystrophin-negative fibers being utrophin positive (utrophin is frequently expressed at the sarcolemma when dystrophin is missing or abnormal). Bottom line - using nNOS increases my confidence in the interpretation of the other immunostains in selected cases.”


Dubowitz V and Sewry CA. Muscle Biopsy: A Practical Approach, 3rd edition (2007) p 261 and 279.

Ehmsen J et al., The dystrophin-associated protein complex. Journal of Cell Science 115 (14) p. 2801-3.

Moore, Steven A. Univ. of Iowa, email communication (July 28, 2008).

No comments:

Brain Pathology's “Under your Microscope” Now Underway

This just in from today's guest blogger Dr. Rachael Vaubel: Brain Pathology “Under your Microscope” is finally up and running! For ...