status marmoratus involving thalamus and basal ganglia |
I discuss issues pertaining to the practice of neuropathology -- including nervous system tumors, neuroanatomy, neurodegenerative disease, muscle and nerve disorders, ophthalmologic pathology, neuro trivia, neuropathology gossip, job listings and anything else that might be of interest to a blue-collar neuropathologist.
Tuesday, November 15, 2016
MOC Exam Topic: Status Marmoratus
The neurons of the infant caudate, putamen, thalamus, and globus pallidus are susceptible to damage by hypoxia-ischemia. In some extensive injuries, a marked gliosis occurs and, if the brain is actively forming myelin in that region, there is hypermyelination of the area with aberrant myelination of astrocytic processes. There is frequently also neuronal loss and mineralization of residual neurons. The resulting white, firm, marbled-appearing lesion is called status mamoratus. Thought to occur if a hypoxic insult happens before the age of 6 to 9 months, status marmoratus has been associated with complicated parturitions and acute febrile illness during the first year of life. Lesions in the basal ganglia occurring after the period of active myelination exhibit only gliosis associated with neuronal loss. (Source: Greenfield's Neuropathology, 8th Edition)
Subscribe to:
Post Comments (Atom)
Neuropathology Blog is Signing Off
Neuropathology Blog has run its course. It's been a fantastic experience authoring this blog over many years. The blog has been a source...
-
Shannon Curran, MS with her dissection Shannon Curran, a graduate student in the Modern Human Anatomy Program at the University of Co...
-
Last summer I put up a post about a remarkable whole nervous system dissection that was carried out at the University of Colorado School of ...
2 comments:
Careful evaluation by Friede & Schachenmayr (Early stages of status marmoratus. Acta Neuropathol;38: 123-127, 1977) of these areas showed that the marbled pattern is simply abnormal orientation of myelinated axons within scarred structures, not the aberrant myelination of astrocytic processes claimed by earlier authors.
Thanks for that clarification, Marc!
Post a Comment